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A test for isomorphism of a pair of crystals uses the higher moments of the sum and difference of their 
normalized intensities (denoted by z+ and z_). The expressions for the general pth moment of z+ and z_ 
are first worked out for isomorphous and non-isomorphous pairs of crystals and from these the ex- 
pressions for the second, third and the fourth moments of these quantities are deduced. Both centro- 
symmetric and non-centrosymmetric crystals are considered and in each type of crystal the expressions 
for the first four moments of z+ and z_ are given for isomorphous and non-isomorphous pairs of 
crystals, depending on the number of atoms in the replaceable group. The results of the theory are also 
applicable to a pair of crystals, one containing a simple molecule and the other its heavy atom derivative, 
which is the type which occurs in protein structures. The results of the theory may also be used to test 
whether the positions of the heavy atoms determined in an early stage of structure analysis are correct. 
The theoretical results have also been tested by using suitable two-dimensional models. 

1. Introduction 

The use of intensity data from a pair of isomorphous 
crystals for obtaining the phases is a well-known 
method. Under favourable conditions, the phases of 
reflexions can be determined with the use of a single 
pair of isomorphous crystals if the crystals are centro- 
symmetric, while the multiple isomorphous-replace- 
ment technique (Harker, 1956) is required for a unique 
determination of the phases in the case of non-centro- 
symmetric crystals. For a successful application of this 
technique, it is essential that the given pair of crystals 
are really isomorphous, namely that the atomic posi- 
tions in the two crystals are the same (within reason- 
able limits). A method for testing for isomorphism 
before applying this method will therefore be very use- 
ful. 

A number of very useful tests, based on the statistical 
distributions of the difference and the product of the 
structure factors corresponding respectively to the re- 
placeable part and the whole crystal, have been devel- 
oped by Srinivasan and others in this laboratory (Ra- 
machandran, Srinivasan & Sarma, 1963; Srinivasan, 
Sarma & Ramachandran, 1963a, b; Srinivasan, Su- 
bramanian & Ramachandran, 1964). Their results 
however apply to the case in which there is a large 
number of atoms in the replaceable group. In this paper, 
we shall consider another possible way in which the 
measured intensities from the given pair of crystals 
can be used to test whether the pair is isomorphous 
or not. We consider both centrosymmetric and non- 
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centrosymmetric crystals and in each crystal we shall 
consider a number of cases depending on whether the 
number of atoms in the replaceable group (also called 
the P-group in this paper) is I, 2 or many. In the case 
of a non-centrosymmetric crystal with a large number 
of atoms in the P-group, the P-group may have either 
a centrosymmetric or a non-centrosymmetric con- 
figuration of atoms and these two cases are respectively 
denoted by MC (many-centric) aand MA (many-acen- 
tric). 

The principle of the method is discussed in §2. §3 and 
§4 respectively deal with the theory for the cases of non- 
centrosymmetric and centr osymmetric crystals. § 5 deals 
with a discussion of these theoretical results and §6 
with the verification of the expressions derived in §3 
and §4 in hypothetical cases. 

2. Principle of the method 

Consider a pair of crystals (both centrosymmetric or 
both non-centrosymmetric) each of which contains a 
replaceable group of atoms (P-group, P in number) 
and a non-replaceable group of atoms (Q-group, Q in 
number). The P-group usually contains heavy atoms 
like C1 or Br and the Q-group usually contains light 
atoms like C, N, and O, in the case of organic crystals; 
however, the theory does not make use of the 'heavi- 
ness' of the P-atoms. Let N ( =  P +  Q) be the total num- 
ber of atoms in the unit cell of each crystal. Let f~ )  
and f~)  be the atomic scattering factors of the atoms 
in the P-group of the two crystals. (The number 1 or 2 
in parenthesis attached to any variable indicates that 
the variable corresponds to crystal 1 or 2 of the given 
pair.) Let fQ~ (k=  1 to Q) be the atomic scattering 
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factors of the atoms in the Q-group in either crystal. 
We further assume that the atoms in the P-group of 
each crystal are identical* and that the two crystals 
have a geometrical similarity. The given pair of crystals 
is said to be perfectly isomorphous if the coordinates 
of the atoms in the two crystals of the given pair are 
identical, except that the atoms in the P-groups in the 
two crystals differ in their scattering powers. The pair 
is said to be non-isomorphous if the coordinates of all 
the atoms in the two crystals have no correlation at 
allt. The relevant quantities in the two crystals may 
be symbolically written as follows: 

Crystal 1 P[f~), r~]] + Q[fe~,, -Ok"(1) J] 

Crystal 2 P[f~) ,  r~ )] + Q[fo.7~, -Ok'(2) J] (1) 

j = l  to P, k = l  to Q.  

The two crystals are isomorphous if 

r~] = r~ ) for each j ( j =  1 to P)  
r(D _,(2) for each k (k = 1 to Q) (2) 
Ok -- "Ok 

and non-isomorphous if 

r~] # r~ ) for each j ( j =  1 to P)  
re1) 4-r(2) for each k (k = 1 to Q) (3) Ok 7- Ok 

We shall use the symbol I as subscript to any quantity 
that belongs to the isomorphous pair of crystals and 
the symbol N I  in the same way, if the crystal pair is 
non-isomorphous. 

The vector diagram showing the structure factors of 
the pair of crystals is shown in Fig. 1 for an isomorphous 
pair (also called /-pair) and in Fig.2 for a non-iso- 
morphous pair (also called NI-pair) of crystals. Using 
the notation shown in these figures, it is clear that: 
for an / -pa i r  

IF~)I :A IF~)[, ~ ) = ~ ) = a p ,  say 
F(~)=F(~ ) = FQ, say and ~,o)= ~,(2)= V, say, (4a) 

and for an NI-pair 

1~9)1 ~ IF~)l, ~ )  ¢ ~ )  
IF(J)I ~ -o~(2)1,, ~o) # ~ )  and ~u °) # ~u (2) . (4b) 

We shall indicate the mean contributions to the in- 
tensity from the P- and the Q-groups by a~ and ~o, 
defined by the equations 

P 

/' - -  d/'l ~ "JQk 
j= l  k=l  

and a ~ = a ~  ~ +  tr~ ~', i=  1, 2 .  (5) 

The fractional contributions to the mean intensity 
from the P- and Q-groups are given by 

* This condition is not  essential for a general theory, but 
the formulae for P =  2 are valid only under this condition. For 
P =  M C  and M A  (see below), the atoms in the P-group need 
not be identical. 

I" One could also think of a case in which the coordinates of 
the Q-atoms in the two crystals are identical, while those of the 
P-group are different. Such a pair of crystals may be called 
'semi-isomorphous' but the mathematics of this case !"s still 
under study. 

a(~ ~;'=''(°2/'(°2~,P ~'N , tr(2 °2-'(°21''(t;-vo r-'N 

and ~(1 ')2 + a(2 ')2 = 1, i=  1, 2 .  (6) 

The normalized intensity z(O for the two crystals may 
be defined by 

z(O = _~(')a~/-('~, ,,.,,,, = IF~) + Fg)lVa~ ~ 
=[IF~)I2+ IF~)I2+ 21F~)IIF~)I cos ~.)] /a~ ~, i =  1, 2 .  

(7) 
From (4a), (4b) and (7) it is clear that z(z) and z (2) 
are dependent random variables if they correspond to 
the /-pair and independent random variables if they 
correspond to the Nl-pair of crystals. The distribution 
of a variable which is defined as a function f [ z  (1), 2 (2)] 
of the variables z(Z) and z(2) will depend on the nature 
of the variables z(z) and z(2) themselves, i.e. will differ 
depending on whether zO) and z(2) are dependent or 
independent random variables. However, it is difficult 
to obtain the distribution function of f, especially 
when z(1) and z(2) are dependent variables. On the 
other hand it is possible in most cases to calculate the 
statistical parameters like moments, variances etc. of 

" ^ , t O  . (2) .  x ~p (= %; ) = 

Fig. 1. Vector diagram showing the relation between the struc- 
ture factors of an isomorphous pair of non-centrosymmetric 
crystals. 

,< 
"%1- 

X 

Fig. 2. Vector diagram showing the structure factors of a non-  
isomorphous pair of non-centrosymmetric crystals. 
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f and since these quantities are characterized by the 
distribution of f,  these parameters can be used as 
statistical tests for isomorphism. 

In this paper we shall consider two simple functions 
of the variables z (~) and z(2), defined by 

Z4" ___~ Z(1) ~t- Z(2) (8a) 

z-  = z(O - z(2) (8b) 

and calculate the higher moments of these variables* 
z+ and z-. The use of the normalized intensities z(~) and 
z(2) rather than the actual intensities ]F~)I 2 and ]F~)I z 
avoids the necessity of knowing scale factors, and this 
is especially important,  and advantageous as well, in 
this case, since the isomorphous replacement technique 
involves intensity data from two or more crystals and 
these are usually measured in different absolute scales. 

It may be mentioned that the distribution function 
of ]FO)[2-[F(Z)[z has been obtained in this laboratory 
by Srinivasan & Venkatachalam (unpublished). This 
function would provide an alternative method of test- 
ing for isomorphism, and a test of this will be published 
elsewhere. 

3. Non-centrosymmetric crystal 

(a) Isomorphous pair 
The normalized intensities of a reflexion in the two 

crystals are given by [see equation (7)] 
z(O (t# (02 = [ap yp + ~.(02,,(02 

uO ~O 
+ ~(o~o),,a),,a) ~<o]/a~, "~'e ~'o ~e.,o cos i =  1, 2 .  (9a) 

where 

y~)=lF~)[/o(] ) and Y~)=IF(°[/a(°,o~o i = l ,  2. (9b) 
Since the atoms in the P-group of each crystal are of 
one type only and since the Q-groups in the two crys- 
tals are identical (we assume perfect isomorphism), 
it is clear that 

y(1) _ ,,(2) v --.re =yp,  say 
yO)_ ,,(2)_y^, say. (10) 

o - - . t O  - -  ~g 

From (4), (6), (9) and (10) we thus obtain 

= ~r(t)2~;z + 2~rco~r(o,, - Z(f) O'(1D2y2p -Jr" 2 ..cO 1 2 Y P . Y Q  COS {// 
'~r(l)~r(l).l/2~112 =~;~zv+~°zzQ+'-~'~ "2 I"1" "~o cos V, i=1 ,  2 ,  (11) 

where zv (=yap) and za ( = f o )  are the normalized in- 
tensities of the reflexion from the P- and Q-groups in 
either crystal. As defined in (8), we have 
z=i:, I=Z (1) + Z (2) 

_- + + _+ 

+ 2[~t)e(~ ') +- ~lrr(2)rr(2)l'X/2"rl/2'°'2 l~'e ~"O COS g/. (12) 

If we make the simplifying notation 

a ±  = o'i 1)2 ~ o'i 2)2 

"2 + 2)2 a n d  

rr(1),-,.(1) + .r(2).r(2) ( l  3) C ± = ~ , l  " 2  - - V l  ~'2 

(12) becomes 

* The higher moments of the product variable z x  =ztl).z(2) 
have also recently been worked out and the results will be 
published shortly. 

z±, x = a±zp + b±zQ + ,.¢.±~p'~ -a/2~u2~o cos V . (14) 

For  simplicity, we shall use only a, b, c and z for a+, 
b+, c± and z± respectively, since the definition of z in 
any particular case will clearly define which of the 
quantities are actually meant. With this, (14) can be 
rewritten as 

zx=azp+bzQ+2CZ~2Z~ 2 cos V.  (15) 

The pth moment of zz is given by 

") ~, ~.1/2,rl/2 ( z f )=( (azp+bzQ+. . . - . e  "-o cos ~ff)P), (16) 

where the symbol ( )  enclosing any quantity represents 
the expectation value of the quantity. In obtaining the 
value of (zf)  as a function of the higher moments of 
zp and ze we may make use of two well-known results 
from the theory of mathematical probability (see Cra- 
mer, 1945, p. 170-174) which are as follows: 

If xj ( j =  1 to r) are a set of random variables, p~ 
are positive integers and k and ca ( j = 0  to r) are con- 
stants then 

<co + S cjxf'> = Co + ~ cj<xf') (17) 
j = l  j = l  

cjxf,5 =(k cj) (xf,). (18) 
j = l  j = l  j = l  

Equation (17) is true independently of the nature of 
the variables, while (18) is true only when the x / s  are 
independent random variables. Since [FPI, ]FQ[ and 
are independent variables, so are yp, yQ and V. The 
general pth moment  of  zr can therefore be obtained by 
expanding the expressions in the right hand side of (16) 
and then applying the results in (17) and (18)*. To 
obtain this expression, we use the multinomial theorem 
for integral exponent, viz., 

(~ +,8 + ?)~ = 2~ P-J p !Mflk?~-J-~ Z (19) 
j=o k=O f i k t ( p - j -  k)t " 

From (16) and (19) we obtain 

(z~)= ((bzQ+ 2cz~2zg 2 cos ~, + azp)~) 
t, p-y p! 

= X , S  
j=o ~=o j ! k l ( p - j - k ) [  

x (bze)i(2czg2z~ 12 cos f/)~(azp)~ -~-k ) 

p_j pt2ZCap_i_~bick ~ " 

j=0 k=0 j ! k l ( p - j - k ) !  
x (z]o+k/2)(zf~-J-1'/2)(cosev). (20) 

Since V is uniformly distributed, i.e. 

, < 

we have 

cos k ~,dv (cos k ~,) = ~ -  cos ~ v d v  = -~ 0 

* For clarity, we may state that/:No) and F N  (2) are independ- 
ent variables for the non-isomorphous case and <Fev(I) F~v (2) > = 
0. Another implicit result is that (FpF¢>=0 for the isomor- 
phous case also, arising from the fact that the P-atoms and the 
Q-atoms occupy different locations in the unit cell. 
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0 if k is an odd integer 

= k!2 -~ (21) 
[(k---~2)!]-- ~- if k is an even integer. 

Equation (21) is a simple result that  follows from the 
expansion of cos e ~u in a series of cosines of multiples 
of  ~, and then integrating the resulting series term by 
term (Loney, 1957, p. 55). It is known that (Srinivasan 
& Subramanian,  1964) for a non-centrosymmetric  
crystal 

(z*o+k/Z>= F ( j  + ½k + 1). (22) 

Substituting (21) and (22) in (20) we obtain 

P P-J p ! F ( j + ½ k +  1) 
(z )=27 27' 

j=0 k=O j ! ( p - j - k ) ! [ ( k / 2 ) ! ]  2 

x aV-Hcb&~(zf, -~-k/2) (23) 

where the prime over the second summation indicates 
that  only terms with k = an even integer are to be in- 
cluded in the summation,  since the terms for which k 
is an odd integer vanish identically. Since only the 
terms for which k is.an even integer exist, F ( j + ½ k +  1) 
can be conveniently replaced by (j+½k)!.  Thus (23) 
becomes 

P p--J 
(z~)=p!  27 27' -(j+½k)!av-~-eb&~c (z~-~-~'/z> (24) 

~=o k=o j ! ( p - j - k ) ! [ ( k / 2 ) ! ]  ~ 

This is a general expression, valid for any type of P- 
group, in which the values of (z$ -+-~/z) depending 
on the number  of atoms in the P-group have to be put  
in. We shall consider four cases, viz. when P = 1, 2, M C  
and MA. It  is well-known that  

1 when P = 1 (25a) 

2 :°-j-l/2/c P ( p - j - ½ k + ½ )  when P = 2 
l /rc F ( p - j - k k  + 1) 

(256) 
2~v-j-1/2/c 

~/rc F ( p - j - ½ k  +3) 

when P = M C  (25c) 

F ( p - j - ½ k +  1) when P = M A .  (25d) 

F rom (24) and (25) we obtain (note the prime over the 
second summation in (26) to (29), indicating that  only 
terms with k even are to be included in them): 

p p-j (j+½k)!av-j-lcb&~ 
27' (z~>=p! S, when P = I  (26) 

i=0 k=0 j ! ( P - j - k ) ! [ ( k / 2 ) ! ]  2 

p, p p-s ( j + ½ k ) ! F ( p - j - k k  +½)2v-J-Ic/2 
z z '  

14r j=0 k=o j ! ( P - j - k ) ! [ ( k / 2 ) ! ] Z F ( p - j - ½ k  + 1) 

xaV-J-kbJc~ when P = 2  (27) 

p! ~ P~] ( j + ½ k ) ! F ( p - j - ½ k + ½ ) 2 v - J - k / 2  

(z~> = ~ 3 = o  I,=o j ! ( p - j - k ) ! [ ( k / 2 ) ! ]  z 

x a:°-~-kbJd c when P = M C  (28) 

(z~)=p!  ~ P~.] ( j + ½ k ) ! F ( p - j - ½ k +  1) 
/=ok=0 j ! ( P - j - k ) ) ! [ ( k / 2 ) ! ]  2 

× aZ'-~-ICbJclC when P =  M A .  (29) 

For  any given integral value o f p  the right hand side of 
each of the equations (26) to (29) can be expanded into 
a homogeneous polynomial  of degree p in the variables 
a, b and c. For  convenience of application of these re- 
suits in practical cases, where the first few moments  of 
zl would be sufficient, we give below the simplified ex- 
pressions of (zf)  for p = 2 ,  3 and 4. It may be noted 
that  the case p = 1 does not afford any test value, since 
the relation 

+ z<a ) = ( z + )  + (z<a) (30) 

holds whether zO) and z(z) are independent or not. 

One-atom case 
(z~> = 2[½a z + ab + b 2 -k" C 2] (3 la) 

(23> = 6[-~a 3 + ½aZb + ac 2 + 2bc 2 + a62 + 63] (3 lb) 

(z~> = 2 4 [ ~ a  4 + -~a3b + ½a2c 2 -I-" ).~1"4 T-l- 1,~2/~22, u 

+ 2abc 2 + 362c 2 + ab 3 + b 4] (31 c) 

Two-atom case 
(z~> = 2[¼a 2 + a6 + b 2 + c 2] (32a) 

(z~)=6[~-~a3+¼a26+~ac2+ 2bc2+ab2+b 3] (32b) 

(24> = 24[~9--~a 4 + a-~a36 + S a2c2 + ¼C 4 + ¼a262 

+ 3abc 2 + 362c 2 + ab 3 + 6 4] (32c) 

Many-atom case: (P = M C )  
(z}) = 2[}a 2 + ab + b 2 + c 2] (33a) 

(zz 3 ) = 6[~-a 3 + ~za2b + 3ac 2 + 2bc 2 + ab 2 + b 3] (33b) 

(z 4 ) = 24[_~a 4 + _~a3b q_ _~a2c 2 + +c 4 .Jr_ 3a2b2 

+ 6abc 2 + 3bZc 2 + a63 + b 4] (33c) 

Many-atom case: ( P = MA)  

( z } ) =  2[a 2 + ab + b 2 + c 2] (34a) 

(z~) = 6[a 3 + a2b + 2ac 2 + 2bc 2 + ab 2 + b 3] (346) 

( ~ )  = 24[a 4 + a36 + 3a2c 2 + c 4 + aZb 2 + 4abc 2 + 3b2c 2 

+ ab 3 + b 4] (34c) 
(b) Non-isomorphous pair 

In this case zO) and z<2) are independent variables. 
The pth moment  of z±, u l  = z (1) + z (2) is therefore given 
by 

(z~:,m) = ((z<') + z(2))P). (35) 

Expanding [zO)+z(2)]p as a polynomial  using the 
binomial theorem we obtain 

( ( 
j=o j ! ( P - j ) !  

(36) 
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where we have used the criterion of independence of 
z(O and z(2) and equations (17) and (18). The values 
of the higher moments of z(1) and zI2) depend on the 
number of atoms in the P-group and their contribution 
to the mean intensity (i.e. on the values of a(~ ~z and 
a(~z)2). For a specific value of p, the expression in the 
right hand side of (36) can be simplified. The expres- 
sions for p = 2, 3 and 4 are given below" 

( Z 2 d z , N I )  = <Z (1}2) AV (Z(2)2> + 2 (37a) 

(Z3d:,NI>=(Z(1)3> "[- 3(z(I)2) + 3(Z (2)2) _ (z (2)3) (37b) 

(Z4:k ,N,> = (Z(1) 4 )  ___+ 4<Z(1)3) + 6(Z(')2)(Z(2)2) 
+4(z(2)3)+(z(2)4> , (37c) 

where we have used the result (z(O)= 1, i=  1, 2. 

4. Centrosymmetrie crystal 

(a) Isomorphous pair 
In this case, the structure factors are all real and the 

equation for the normalized intensities in the two crys- 
tals can be written 

z(O = I F(~) + F(t)[z/a (o2 
(2 N 

=[[F~)12+ (i) 2 (1) (t) (0 (t)2 . IF(2[ +2[FellF(2ls ] /aN,  i = 1 , 2  (38) 

where s(0-o(o~(o the product of the signs of F~ ) and - -  o p  0 (2  , 

Fg >, i=  1, 2. It is clear that 

s( ~ =s(2) = s, say.  (39) 

As in the case of the non-centrosymmetric crystal, 
(38) can be rewritten 

Z(  O = G(II)2 z p ..~ ,-r(l)2-~^ ..L ") ,,r(i) trCl).z l /2,r l /2e  u 2 . .~., .ux~.2..e..(2o, i = 1 , 2 .  (40) 

The test variables are, by definition, 

Z + , I  = Z (1} ___ Z (2} 

=azlg+bzQ+2czle12z~2s=zi, say. (41) 

The pth moment of zz is given by 

(z~)= <(bzo+ 2czg2zae/2s +az~,)~) . (42) 

Applying the multinomial theorem (19) in (42), we 
obtain 

(z~]) ~ P-J p~2ga~o-j-gb~cg (SlC)(Z~+kl2)(Z~t_l_kl2) 
~=Ok=O j t k ! ( p - j - k ) l  

(43) 

It is well known (Srinivasan & Subramanian, 1964) 
that for a centrosymmetric crystal 

(zb+g/2)=23+e/2rc-~F(j+5 k +5) .  (44) 

Since Fe and Fo are independent, s~ and so are also 
independent so that by (18) 

( s ) =  (spso.)= ( sv ) ( s@ . (45) 

It is clear that the probability function of se is 

P ( se )=5  so that (se)  
= ( +  1)e(+  1 ) + ( - 1 ) e ( - 1 ) = 5 - ~ = 0 .  (46) 

That is, ( s )=0 .  

S i n c e  s 2n-: 1 and S2n+l=s2ns=s,  w e  have 

(s2n)= 1 and (s2n+l> = (s> =0  . (47) 

Using (44) and (47) in (43), we obtain 

pt p p-J 2J+3/21cF(j+ ( # )  = ~ S S' 5k +5) 
l' z~ j=ok=0 j ! k t ( p - j - k ) !  

a~-J-tCbJcg(z~-l-k/2) (48) 

where the prime over the second summation shows 
that terms for which k is an odd integer vanish iden- 
tically. The value of (zPe -j-k/2) will depend on the 
number of atoms in the P-group and we shall consider 
three cases, viz. when P = 1, 2 and many. The values of 
(z~ -j-k/z) for these three cases are given by (25 a, b, c). 
Substituting (25 a, b, c) in (48) we obtain [note the 
prime over the second summation in (49), (50), (51)] 

p! 2~ p-j ~w, 2i+3g/2F(j+5k +½) apq_kbJcg 
(z~)= V--~ y=0 ~=0 j l k ! ( p - j - k ) !  

when P = I  (49) 

p! p-J (z~) = - -  ~ Z" 2~+~F(j+½ k + ½ ) F ( p - j - 5 k  +5) 
zc j=Ok=O j l k l ( p - j - k ) t F ( p - j - ½ k +  1) 

× a~-J-~bJc ~ when P = 2  (50) 

(z~) = ~P! ~ z'P-i 2P+~F(j+5k + 5 ) F ( p _ j _ 5 k  +5) 
zr y = 0 k = 0  j ! k ! ( p - j - k ) !  

x a~-~-gbJc ~ when P = M C .  (51) 

As in the case of the non-centrosymmetric crystal, 
these expressions can be evaluated for any given posi- 
tive integral value of p. For the purpose of practical 
application, we shall give the expressions for (z~) for 
specific values of p, viz. p = 2 ,  3 and 4. The expressions 
are given below. 

One-atom case 
2 __ 1 2 4 2 ( z l ) - 3 [ ~ a  +-~c + 2-ab+ b2] (52a) 

(zza) = 15[~-~a3+½a2b+{ac2+-~bc2+{ab2+b 3] (52b) 

( # )  = 105[T~o s a 4 + T~a3b + a-~a2c 2 + }~5c 4 +-~sabc 2 
+ a-~-Ta2b2+-~b2c2+~ab3 + b4] . (52c) 

Two-atom case 
(z2) = 315a2+{c2+~ab+ b 2] (53a) 

(z~)=15[Xoa3+ ~J-ea2b+{ac2+~-bc2+ aab2+b3 ] (53b) 

(z~1) = 10512--~a 4 + z~-faab + -~a2c 2 + ~5c 4 -~- -~sabc 2 
+ a-~a2b2 + 3~-b2c2 + ~ab3 + b 4] (53c) 

Many-atom case 
(z~)= 3[a2 +-~c2 + ~ab + b 2] (54a) 

(z~)= 15[a3+ 3a2b+~ac2+-~bc2+ 3ab2+b3] (54b) 

(z4) = 105[a4 + ~a3b+~q~a2c2+ -~'~C48 4 AI_...~__ v ~144al~r2 

1 8 2 2  + ~ a  b +~v~b2cE+-~aba+b 4] (54c) 
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(b) Non-isomorphous pair 
In this case z(~) and Z (2) are independent variables and 

the expressions for the higher moments of z+,Nz= 
z(1) + z(2) are again given by expressions (35), (36) and 
(37). 

5. Discussion of the theoretical results 

It may be noted that the expressions for (#w) are 
identical for centrosymmetric and non-centrosym- 
metric crystals. However, the actual values of (z(lip) 
and (z(2) p) which are to be substituted in these expres- 
sions are determined by the nature of the crystal (i.e. 
by whether it is centrosymmetric or non-centrosym- 
metric). The values of (z(0P)(i= 1, 2) depend on the 
number (P) and the contribution 0.(1o~ from the atoms 
in the P-group and the values of (z~0 p) for different 
values of p are available as numerical tables (Partha- 
sarathy & Ramachandran, 1965). The values of (z(0 p) 
obtained from these tables corresponding to the contri- 
butions 0.(11~z and 0.(12)2 of the atoms in the P-groups of 
the two crystals may be used to obtain the theoretical 
value of (Zfvz). 

We have given explicit expressions (see equations 
(31) to (34) and (52) to (54)] for (z~:) ( p=2 ,  3 and 4) 
only for a few cases as a function of the number of 
atoms in the P-group; viz. for the cases for which P = 
1, 2 and many. Equations (20) and (43) are, however, 
quite general and apply to any pair of crystals of any 
space group symmetry. (Both the crystals of the given 
pair should, however, belong to the same space group.) 
In using these expressions for calculating the theoret- 
ical values of (z~:) for any given pair of experimental 
crystals belonging to a space group of symmetry other 
than 1 or i, we must use the appropriate values of the 
corresponding moments, as determined by the crystal 
symmetry and atomic positions (special or general). 
These quantities can be obtained by using the tabulated 
results of Foster & Hargreaves (1963). 

Though we have considered only the case of a re- 
placement of one P-group of atoms by another of a 
different scattering power [i.e. replacement isomorph- 
ism as defined in (1) and (2)], the results of the theory 
in the earlier sections apply also to a pair of crystals of 
the type: 
Crystal 1 Q[f  QI¢, ,.(1) 1 "OkJ + P[.f~), r~]] 
Crystal 2 Q[fQ~, .(2) 1 "ogJ, J = l  to P, k = l  to Q.  (55) 
The situation described in (55) is only a particular case 
of the general theory and often arises in the structure 
analysis of proteins. In such cases we have to put 
0.~2~z=0 and 0.(22~= 1.0 to obtain the theoretical values 
for (z~:a) and ( z~ ,m) .  

In the early stage of structure analysis using a crystal 
with heavy atoms, the positions of heavy atoms are 
first determined. We often require simple tests for 
knowing whether the assumed positions of the heavy 
atoms (say determined from the Patterson function) are 
correct. Such a test is provided by applying the results 
of the theory. This case corresponds to isomorphism 
defined by 

Crystal 1 P[f~), rg]] + Q[fQlc, -~rkJ'(1) 1 
Crystal 2 P[f~), r~]], j =  1 to P, k = 1 to Q. (56) 

The situation described in (56) is only a particular 
case of the general theory and in this case we have to 
put 42)2= 1.0 and 0.(22)2=0 to obtain the theoretical 
values of (z~:a) and (Z~,NI>. A comparison of the ex- 
perimental values of (z~:) with the values of (z~:a) and 
(z~:,m) would indicate whether the assumed locations 
of the heavy atoms are correct or not. (In this partic- 
ular case, the actual distribution function of y = y t a ) -  
y(2) has been worked out by Srinivasan & Ramachan- 
dran, 1965.) 

Expressions (31) to (34) and (52) to (54) must satisfy 
the following physical conditions. When there is only 
one crystal, the expressions for (z~:a) should reduce 
to the corresponding simple pth moment of z(= ]FN[2/ 
0.~v, the normalized intensity) for that crystal (i.e. the 
Foster & Hargreaves (1963) test values]. That is, the 
following limit must hold good, vie. 

limit 0"(12)2 ~ 0 and 0.(2 2)2 --~- 0 ( Z ~ ) =  ( Z P ) .  (57) 

To prove (57) we note that when 0.~2)2=0 ( i= 1, 2) 
a± ~ 0.(1D2 = 0. 2, say 

,~(D2_ ,.2 say b +  ---->- ~'2 - t ~ 2 ,  
rr(1),.r(l) - -  .-. ~- c± ---> "1 ~2 -~,1~2, say. (58) 

Using (58) in the expressions for (z~:a) it has been 
tested and found that (57) is satisfied. 

6. Verification of the results of the theory 
in practical cases 

The results of the theory have been tested by using 
appropriate two-dimensional models. The details of 
the test are given in Table 1. The crystal pair A consist- 
ed of a pair of two-dimensional hypothetical isomor- 
phous structures each having two atoms in the P-group, 
chosen to be such that a~1D2=0.6 and a~2)2=0.3. The 
crystal pair B was similar to pair A except that ~D2=0 
and o~2)2=0-3 and the isomorphism of this pair cor- 
respond to that described in (55). Crystal pair C con- 
sisted of two-dimensional hypothetical isomorphous 
structures each having 20 atoms in the P-group and 
20 atoms in the Q-group such that ~1D2= 0.6 and a(12)2 = 
0.3. Crystal pair D was similar to pair C except that 
a<11)2 = 0 and 0.~2)2 =0.3 and that the isomorphism of this 
pair correspond to that described in (55). In each case, 
the values of the normalized intensities of reflexions 
in each of the crystals of the pair were first determined. 
The second, third and fourth moments of z+ = z(1) + z(2) 
were then determined and these represent the 'experi- 
mental' value denoted by E. The theoretical values of 
(z~:a) and (z~:.m) ( p = 2 ,  3 and 4) were calculated by 
making use of the known values of 0.(1~ ( i= 1, 2) and 
are listed in the rows marked I and NI. A comparison 
between the 'experimental' and theoretical data for the 
higher moments shows that the most suitable quanti- 
ties for the test are the second and fourth moments 
of z-. 
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F r o m  the general expressions for the pth moment  of  
z+ it is possible to obtain the expressions for (z~:) for 
any specific value of  p. We have however given expres- 
sions of  (z~:) only for p = 2, 3 and 4. It is generally not  
necessary to compute higher moments  of  z± than the 
fourth,  since experimental errors will unduly affect the 
test values when p is very large. When p is small, say 2, 

2 the theoretical values of  ( z~ . l )  and (z~:.N1) are not very 
different so that  the second moment  test is not very 
effective. Fur ther  the values of  the third moment  of  the 
difference in the intensities, i.e. of (z3_a) and (zk.Nl) 
are not widely diffei ent, since both positive and negative 
terms occur in these expressions. It seems therefore 
that  the 4th moment  of  z -  would provide the most use- 
ful test for isomorphism in practical cases. 
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(b) Values of higher moments 

Type Nature* (z+2) (z+3) (z+ 4) (z- 2) (z -3) 
A E 7.744 41.50 278.7 0 . 1 1 4 1  -0.0261 

I 7.413 39.50 271.2 0.1370 -0.0548 
NI 5-775 21.54 97.9 1-7750 -- 0.6210 

B E 7.229 40.58 303.2 0.5067 0.1615 
I 7.355 40.29 293.8 0.5550 0-2430 
NI 5.955 23.49 117.5 1.9550 0.3430 

C E 8.360 51.90 407.2 0-1406 0.0205 
I 9.438 45.82 358.0 0.3620 0.0000 
NI 6.000 24.00 120.0 2.0000 0.0000 

D E 7.116 35.05 212.4 0.7942 -0.1646 
I 7-580 40.80 299.8 0.7800 0.0000 
NI 6.000 24.00 120-0 2.0000 0.0000 

* E 'Experimental' values computed from the distribution of the 
I Theoretical values for an isomorphous pair. 
NI Theoretical values for a non-isomorphous pair. 

(Z_ 4) Remarks 
0"0527 
0.1030 

16-1800 
1" 1422 All moments give 
1-4610 isomorphism 

19.8200 
0.0842 
0.0107 

24.0000 
3"3920 (z+P) ambiguous 
2.1600 but (z- 2) and (z- 4) 

24-0000 confirm isomorphism 

structure factors actually calculated. 


